If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15p^2+5p=20
We move all terms to the left:
15p^2+5p-(20)=0
a = 15; b = 5; c = -20;
Δ = b2-4ac
Δ = 52-4·15·(-20)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-35}{2*15}=\frac{-40}{30} =-1+1/3 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+35}{2*15}=\frac{30}{30} =1 $
| 15^2p+5p=20 | | 2/3x-5=4+x | | (x+9)/5=-9 | | 18-4y=10 | | (7)(17.5)=3x | | -3(3p+6)-2(2-14p)=3(4+6p) | | -5(-2x+8)-8(-5-5x)=48+51x | | 8x+5x+3+7=10x+4+2x | | 6x+5+5x-2=5x+6x-11 | | 5b²+4=-12b | | 4/6w=-4 | | 10x10^2x=6 | | 5(4r)=-80 | | 5a²+15a=0 | | -3x+11-5=11 | | 7x-1/4-1/3(2x-1-x/2)=10/3 | | 3(x-8)=5x+9 | | (3x)/10=-9 | | 4m^2-20m+53=D | | (x+10)/7=-2 | | -5/3=1/2x-3/4 | | 0=4x^2-49x | | 0.7w-0.4+0.2w=4 | | 350=5+x285 | | 8x+4x-4x=40 | | X-21=711-c | | 3(x-1)=(2x+3) | | 350-5x=285 | | 3(x-1)=2x+3) | | (6x-1)(7x+4)=0 | | X=3/4y-3/4 | | 92=56×1x |